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The purpose of the present paper is to derive expressions for the pressure fields of 
various high frequency convected singularities immersed in a unidirectional 
sheared flow. These expressions include the simultaneous effects of fluid and 
source convection and refraction. These results are then combined to predict 
the far-field directivity of cold round jets. It is found that the agreement between 
experiment and the present theory is quite good at a source Strouhal number of 
unity but that this agreement deteriorates as the source frequency is increased. 
Our theoretical results show the explicit form of the ‘refraction integral’ and 
that convective amplification for the pressure of a quadrupole is increased by a 
factor of (1 - MJ cos O)-l over the classical results, where MJ is the jet Mach 
number and 0 is the angle from the jet axis. Thus acou&ic/mean-flow interaction 
not only implies refraction but also additional convective amplification due not 
to  source convection but to fluid motion. 

1. Introduction 
Lighthill (1  95: ), in his classic theory of jet noise, identified the most prominent 

source of noise as the double divergence of the tensor uu, where u is the fluid 
velocity. He also showed that the acoustic pressure fluctuations that are driven by 
this source obey the classical wave equation. Since the source of noise is embedded 
in the jet, the pressure fluctuations propagate through a region of non-uniform 
velocity (and perhaps temperature) before they reach the observer. The Lighthill 
theory clearly fails to account for this physical effect; that is, it does not take 
acousticlmean-flow interactions into account explicitly. 

Recently it has been recognized, especially through the work of Mani (1972, 
1973, 1976a, b) ,  that these acoustic/mean-flow interactions are extremely im- 
portant and explain quantitatively many of the observed characteristics of the 
noise of cold and hot jets. Perhaps the most significant finding of Mani is that 
‘ convection amplification’ is frequency dependent, where in the definition of 
convection amplification we now include both source and fluid convection effects 
(i.e. a non-zero jet velocity). Of course, several other authors, notably Ribner 
(1962), Csanady (1966), Schubert (1972) and Pao (1973), have qualitatively 
explained a number of phenomena through acoustic/mean-flow interactions. 

The starting point of Mani’s theory is Lilley’s (1972) equation. Considerable 
mathematical complexity can be eliminated, as was done by Mani, by assuming 
that the jet velocity and temperature profiles can be represented sufficiently 
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accurately by constant (i.e. slug) profiles. Indeed this assumption is surprisingly 
good for both hot and cold jets except at high frequencies, where Mani’s theory 
systematically fails. The purpose of this paper is to bridge this gap and to provide 
explicit asymptotic results at high frequencies for the pressure fields of various 
convected singularities. Using a theory of Ribner (1969), the acoustic fields 
of cold or hot jets can be readily constructed from these pressure distributions 
(see also Mani 1976a, b) .  

The starting point of our theory is also Lilley’sequation, in which the jet velocity 
and temperature profiles are left as arbitrary functions of the radial variable r .  
The relevance of Lilley’s equation to jet noise has been questioned by a number of 
authors for various mathematical and physical reasons. We feel that if acoustic/ 
mean-flow interactions are important, as they indeed are, the Lilley equation 
must be aJirst approximation of these effects. This conjecture is supported by 
the success of the work of Mani and the most recent publication of Ffowcs 
Williams (1974). 

Thus the present work is quite reminiscent of the high frequency work of Pao 
(1973). However, there are a number of important differences, which we now 
point out. First, our starting point, as mentioned before, is Lilley’s rather than 
Phillips’ (1960) equation. Second, we consider a cylindrical jet rather than a 
planar shear layer and solve explicitly for the pressure fields of various convected 
singularities. Third, this paper is not concerned with the description of the noise 
sources themselves: such a description has been given by Proudman (1952) and 
Ribner (1969) and provides the quadrupole weighting factors for our acoustic 
theory. These weighting factors tell us how the quadrupoles of various orienta- 
tions must be combined to produce an ‘eddy of convected and isotropic turbu- 
lence’. (Since the weighting factors are independent of the angle from the jet 
axis, we can obtain these factors at 0 = go”, where acoustic/mean-flow inter- 
actions are usually small, so that Lighthill’s and Lilley’s equations yield nearly 
identical results.) Fourth, our final expressions for the pure convective amplifica- 
tion (i.e. for the index /3 of (1 - N, cos 0 ) P )  differ somewhat from those of Pao 
(1973) for his so-called S O  mode (see Pao’s equation (70)). 

Our approach is to solve Lilley’s equation for a convected point source of 
circular frequency w.  This solution is a Green’s function. The approximate 
solution that we present is valid to lowest order as ka + co ( k  = u/c,) ,  where a 
is the jet radius and c,  is the ambient speed of sound. We also require that 
andnU/drn = O( U ( 0 ) )  (where n = 1 ,2  and U ( r )  denotes the jet velocity); that is, 
the scale of the shear layer is of order a. This assumption is clearly violated in the 
immediate vicinity of the jet exit. Similar remarks hold for the jet temperature or 
acoustic speed c = c(r) .  From experience with problems of this kind, we know 
that the above asymptotic theory should be quite accurate for ka 2 2, that is for 
frequencies greater than the peak frequency of jet noise (the exact values of the 
frequency depend on the jet Mach number). We next show how to obtain the 
corresponding results for dipole and quadrupole singularities. Finally compari- 
sons with experimental data are given. 

We remark that the low frequency end of the jet-noise spectrum can be pre- 
dicted quite well by another asymptotic theory (Balsa 1975) or by the slug-flow 
model of Mani (1976a, a). 
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2. Formulation of the problem 

ordinate system ( r ,  8, x’) ,  where x’ is along the jet axis. Lilley’s equation is 
Assume that our physical space is spanned by a stationary cylindrical co- 

- dU a 
dr ax 

- 
= pDuV.  V .  (u‘u‘-u’u’) - Zp - ,  V.  (u~u’ -u;u’), (1  a )  

with 
D ,  = alat + ualaxi (1 b)  

and 

where t denotes time, p is the acoustic pressure, c = c(r) is the undisturbed speed 
of sound, U = U ( r )  is the mean or time-average jet velocity and p = p ( r )  is the 
mean jet density. The turbulent velocity fluctuations are given by u’ and an 
overbar denotes an appropriate average (u; is the radial component). 

If c, is the ambient speed of sound, we require that 

1 < C/C, < cJ/c,, O < U~C, < MJ, lim U(r )  = 0, (2a-C) 
r-wa 

where MJ and c JlC, are given numbers. The solution to (1 a)  can be written down 
formally as t + 03 provided that the solution to 

L ( G ;  U ,  2’) = e-iwt6(d - q t )  6(r - r,,) a(#- @,)fr ( 3 4  

is known. I n  ( 3 a ) ,  w ,  V, > 0,  and ro and 8, are given constants (i.e. independent t ,  
r ,  0 and 2’). Of course, ( 3 a )  simply defines a Green’s function. Actually, using the 
Galilean transformation x = x’ - V,t, it  is possible to rewrite ( 3 a )  as 

where 
L(G;  7, x) = eciUl6(x) 6(r - ro) 8(0 - O0)/r, ( 3 b )  

v =  u-u,. ( 3 c )  

Thus the canonical problem that we solve is ( 3 b )  with a suitable radiation 
condition as (r2 + x 2 ) t  -+ co. The solution to ( 3 a ) ,  or ( 3 b ) ,  represents the pressure 
field of a convected monopole source. This pressure field obeys Lilley’s equation. 

After using the sequence of Fourier transformations, 

we find that ( 3 6 )  reduces to 

-+ -+-log - d2G 1 d 
dr2 [ r  dr (c“,) 

13-2 
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where N = V/cm and k = o/c,. Note that the inverse Fourier transformation 
corresponding to (4a) is given by 

The coefficient of da/dr in (4 b )  can be eliminabd by a standard transformation. 
If we define 

then ( 4 b )  reduces to 

where Q = slk and 

Let us now observe from ( 6 b )  that for small values of r the term ( n 2 - * ) r 2  
dominates the left-hand side (note that r-l@J$ has a removable singularity at 
r = 0) ,  whereas, for kr 1 the term k2[. . .] dominates since the terms involving $ 
are O(a-2) by hypothesis and ka $ 1 .  Thus the terms involving $ can be neglected 
for all values of r as long as ka $= 1 ; therefore (6 b )  simplifies to 

where ( 1  - N c ) ~  
(Clem l2 

g2(r; u) = - us. 

The qualitative behaviour of P depends on the sign of 9%: P is ' oscillatory' for 
g2 > 0 and 'exponential' for g2 c 0. We now focus our attention on the turning 
points of g2, that is, on the values of r for which g = 0. 

3. The turning points 
Readers familiar with the classical WKBJf technique (Morse & Feshbach 

1953) may at this point feel that the turning points of (7a) are determined by 
the quantity in the curly brackets rather than g2 alone. Indeed this is one ap- 
proach that coincides with the classical results of Langer (see Erdhlyi 1956, 
p. 7 8 ) .  This approach leads, however, to undue complications since the turning 
points will depend parametrically on n. Our approach is based on the observation 
that if g2 were constant the solutions of (7a) would essentially be given by Bessel 
functions for g2 > 0 and by modified Bessel functions for g2 < 0. The turning 
points, that is the places where we switch from Bessel to modified Besselfunctions, 

t Perhaps more correctly called the Liouville-Green-Rayleigh-WKBJ technique. 
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are determined by g2 alone, independently of n. We shall come back to this point 
later when we discuss the solutions of (7a). 

We now examine the turning points of g2. Let us observe that g2 is a quadratic 
function of N with g2 --f + 03 as I NI + 00. The N intercepts of this quadratic are 
given by 

with A?, > N,. By hypothesis [see (2b)l  

N ,  = l/Q-C/c,, N 2  = l/(t+C/C,, @a, b )  

(8 c) -Mc < N < (Mj-M,) ,  

where M, = Q/cm and, as before, N = V/cw = (U- V,)/cm. Without any loss of 
generality and without violating any of our previous results we may set M j  and 
c equal to the maximum values of the jet Mach number and acoustic speed: this 
has been anticipated by the notation. 

The assumption that 0 < MJ - M, < 1, which we now invoke, is not terribly 
restrictive for jet noise. A more restrictive assumption on our theory is that 
M, < 1. The latter assumption must be made to guarantee that the particular 
mathematical procedure that we follow, namely the evaluation of the s integral 
in (5) by the method of stationary phase, be meaningful. It is, however, possible 
to extend our results to M, > 1 by the methods used by Seckler & Keller (1959) 
in connexion with another problem. Of course, we still get a singularity when 
M, 15: 1 but this singularity can be 'removed' by the techniques developed by 
Ribner (1962) and Ffowcs Williams (1963). Putting all these assumptions together 
(8c)  may be rewritten as 

- 1  < -M, < N < M j - M ,  < 1, (9) 

or in other words NE ( -  1 , l ) .  
When cr 2 0, N2 2 1, so that g can vanish at most for one value of N in the 

interval ( - 1 , l ) .  The values of r for which g vanishes are given by the solution of 
(Sa) for r, that is, by the set of rg for which 

N(r,) = l/v-c(r,,)/cm, Q 2 0. (10) 

Equation (10) cannot have a solution when Q$ [(c j /~ ,  + M j  - 2MC)-', (1 - M,)-l] 
since the quantity N+c/c, is bounded both from above and below. The last 
statement can be made considerably sharper if we assume that there exists an 
r, say r*, such that c(T*) = cj and U(r*) /c,  = M j ,  in other words that the maxi- 
mum jet acoustic speed and jet velocity occur, at least once, a t  the same radial 
location. (Note that this assumption of the existence of an r* is generally fulfilled 
for jets.) Then there exists a t  least one turning point r, whenever 

(cj/cm + M j  - Mc)-l < g < (1 - MJ-'. 

For 0 < (t < (cJ/cW + Mj-MC)-' there are no turning points; in fact, from ( 7 b ) ,  
g2 > 0. Similarly, for Q > (1 -M,)-l we have g2 < 0. 

The corresponding conclusions for cr < 0 can also be obtained from (Sa, b) .  
We find that there exist cr, < u2 < 0 such that g2 > 0 for a~(o;, 0) ,  g2 has at 
least one turning point for Q E [Q,, cr2] and g2 < 0 for (t < 0;. In  general, it  is not 
possible to give the number of turning points and the functional dependence of 
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FIGURE 1. Some typical jet velocity and acoustic speed profiles. 

u1 and c2 on M,, M,, etc. in closed form. Of course, for spec@ jet velocity and 
temperature profiles this functional dependence is known; for example, when 
c/c, = 1 , g1 = - (1 - MJ + M,)-I and g2 = - (1 + MC)-l (see also figure 1). 

At this point we jump ahead of ourselves and quote certain results without 
proof. As stated before, the integral in ( 5 )  is evaluated by the method of stationary 
phase. The point of stationary phase is given by (g = s / k )  

cT* = cos O/( 1 -Nc cos O), (11)  

where 0 is the angle from the jet axis. Thus for 0 somewhat greater than 90' 
(i.e. for CT < g2) we cannot give the mean-square pressure with any kind of 
generality, since the number of turning points depends on the shape of the velo- 
city and temperature profiles. This deficiency of the theory is not terribly severe 
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because in jet noise one is almost always interested in the pressure field at the 
forward angles where the peak noise occurs. 

The point that we want to make, in the terminology of Mani, is that there is 
'fluid shielding' for 0 < 0 < 0, = cos - l [ l / ( l+  MJ)]  and generally also for some 
range of 0 > 90". 

So far we have not placed any real restrictions on U(r) and c(r). We now specify 
that dU/dr < 0 and c /c ,  = 1. Thus we find that MJ = U(O)/c, and cJ/c, = 1. 
The above profiles approximately describe those of cold round jets. Since U/cm 
is now monotonic, there exists no turning point for 0, < 0 < 180" and a unique 
turning point r, for 0 < 0 < 0,. This choice of U and c results in considerable 
algebraic simplification. In  any case, our theory can be easily extended to other 
velocity and temperature profiles, for example to annular or coaxial jets. In  the 
forward quadrant (i.e. 0 < 90") the only difference between the present and the 
most general theory is in the number of turning points r,,. We simply assume in 
this paper that there is a t  most one r,,. Those familiar with the WKBJ theory will 
realize that the treatment of several turning points (especially well separated 
turning points) affords no great difficulty other than algebraic. 

4. The composite solutions 
This section is devoted to solving (7a) as hm +co with c/cm = 1 and dU/dr 6 0. 

Thus, as discussed before, g2 has a unique turning point r,, for 0 < 0 < 0,. Further- 
more, it is possible to show that g2 > 0 for r > r,, and g2 < 0 for r < r,. 

In  the interest of simplicity we next assume that ro < a, i.e. that the convected 
singularities are approximately on the axis of the jet. This assumption leads to 
tremendous mathematical simplification, in so far as the infinite sum in (5) is 
replaced by a finite sum of a few terms. Mani found that centre-line convected 
singularities are sufficient for the description of round-jet noise even though the 
physical source of noise is distributed circumferentially and radially in the shear 
layer. The experimental results of Atvars et al. (1966) show that the net effect of 
a 'ring' source is very similar to that of a centre-line source, which is an experi- 
mental justification for our assumption. 

Since at the end of the analysis we set ro = 0, we may assume that ro < r,,. 
Thus, in the vicinity of the jet axis g2 is negative. We now want to find two special 
solutions of (7a) ,  one remaining finite as r -+ 0; the other representing outgoing 
waves at  infinity. These solutions are obtained by the method of matched asymp- 
totic expansions. 

We next introduce an inner variable 

i: = kr (12a) 
and define an inner region such that i: is of order unity. In  the inner region (7 a)  
reduces to 

where Ra3 denotes the value of P in the inner region as ka -+ co and 
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A solution of (12 b )  that remains finite on r = 0 is proportional t o  

+‘~n[~f(o)I, 

where I, is a modified Bessel function of order n. 
In  the outer region, where 

is of order unity, (7 a)  reduces to 
i; = rla 

as ak --f 00, where P(O)is the outer solution. The solutions of (13b)  are given by the 
WKBJ approximation (Morse & Feshbach 1953) as 

From (14)  and ( 1 2 4  we can easily form LL composite solution by the method of 
Van Dyke (1964). This solution is uniformly valid for all r < r, and remains finite 
on r = 0. The final result is 

The most general solution of (7a),  in the region r < r,, can be written down by 
inspection from (15)  in terms of I, and K ,  and suitable WKBJ solutions, where 
K ,  is a modified Bessel function of the second kind. Note that this general 
solution is not bounded near r = 0. 

By a completely similar procedure we can find the composite solution of ( 7 a )  
that represents outgoing waves at infinity. We thus have all the solutions of ( 7 a )  
that are required for the construction of the Green’s function. 

An implicit assumption-f in our definition of the inner region is that the turning 
point r,  is ‘far enough’ outside the inner region. This assumption is clearly 
violated whenever cos 0 w ( 1  +NJ)-l, so that our solution may fail in this region. 
The width of this region, that is the ‘boundary-layer’ thickness, vanishes as 
k + 03. The present theory essentially joins the solutions on either side of this 
boundary layer by a continuous and smooth curve. The experimental data 
indicate that this is probably a reasonable approach. 

A careful mathematical treatment of the present problem is extremely difficult 
and delicate. For example, when r, w 0, the turning point is of second order 
and the inner solutions are given by 4n rather than J,. 

We feel that it is not necessary to consider in detail this boundary layer in 
order to predict the overall features of acoustic/mean-flow interactions. 

t The author is grateful to one of the referees for pointing this out. 
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5. The Green's function 
When r c r,, P must be finite, so that in this region P is a constant multiple of 

(14). On the other hand, for ro < r c r,, P is given by the most general solution of 
(7a), involving I,, K ,  and suitable WKBJ solutions. Finally, when r > r,, P is 
a constant multiple of the outgoing-wave solution. 

Across the source location (i.e. across r = ro) P must be continuous and P, 
must jump by an amount that is determined by integrating (7a) across r = r,,. 
Across r,, P must satisfy the classical turning-point conditions (Morse & Fesh- 
bach 1953). These conditions at ro and r, determine P uniquely. For r > r, and 
kr 1 the final result is 

where 
The 

No = N(ro). 
transform 0 of the Green's function is given by (6a) as 

B = --k?.-?ql--ivu)P, (17) 

so that the s integral in (5) necessarily involves the evaluation of an integral of 
the form 

9eikh(")da  for k + 03, (18a) 

where 

h(a)  = za+ c' g(r; a) dr. (18b) 

Under suitable restrictions (we shall in a moment see what these are) it is 
possible to evaluate (18a) by the method of stationary phase (Carrier, Krook & 
Pearson 1966, p. 272). If we define 

Ir 

z/r = cot 0 (19a) 

it is possible to show that the point of stationary phase of (18a) is given, as 
r-+&,by 

In  order that the method of stationary phase be applicable, we require that 
a* be real, that is Hc < 1. This explains the necessity for the upper limit on M,. 
In  jet noise it is customary to introduce an angle 0 defined by 

u cos 0 - M, 
cosQ = 

(1 + M," - 2N, cos 0))' 

Note that 0 is the angle between the jet axis and the line connecting the observa- 
tion point and the source point at the time of emission of the sound wave. In  
terms of 0, we find that 

(21) (7% = cos @/(I -M, cos 0), 
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and as R = r/sin 0 + co, the Green’s function (17) becomes 

with M, = M(r,) andfevaluated a t  the point of stationary phase. When there is 
no turning point (i.e. 0, < 0 < ISOO),  we set rb = 0 and replace In in (22)  by 

Let us remark that the terms in the infinite sum in (22) are even functions of n. 
Thus (22)  can be readily rewritten as a sum of cosines over non-negative integers; 
this will be done in the following section. 

Jn[krog(O)I exp ( - *inn)* 

6. The pressure field of convected singularities 
Let us begin by seeking the solution of 

L ( Y ;  U ,  x’) = pa D,  e-iot8(x‘ - Qt )  6(r - r,) S(0 - 0,)/r; (23)  

Y may be thought of as a pressure source. After evaluating the derivatives on 
the right-hand side, we find that the forcing term in (23)  reduces to 

pa[ - iue-iut&(x’ - Gt) 6(r - r,) S(8 - 0,)/r 
+ (~-Q)e-iwt6’(x’-U,t)6(r-ro)&(8-0,)/r],  (24)  

where S’ is the derivative of the &function. Thus 9’ is expressible in terms of G 
and aG/ax’. In  fact, 

(25a)  Y = pa[ - i~ + (Uo- U,) ikg*] G ,  

or 
l -xocosO 

Y =  -ihp c G, 
a “ 1 - ~ , C O S 0  

withM, = M(r,) and U, = U(r,). 
Now let us observe that the Lilley operator is independent of x’, ro and 8,. Thus 

any derivative (with respect to x‘, ro or 0,) of the left-hand side of (23)  is directly 
transferable to 9. Similarly, when applied to the right-hand side, these differen- 
tiations will induce higher-order singularities. These singularities will produce the 
various dipole and quadrupole solutions of Lilley’s equation. For example, a 
suitable linear combination of aY/ar ,  and a Y / a O ,  produces a transverse dipole, or 
more precisely, aY/ar ,  represent.s an r-dipole (note that we assume, dM/dr z 0 at 
r = 0). Using the definitions 

9 can be rewritten as 
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where 8, = 1 and en = 2 ( n  > 1). Furthermore, if we set 

C, = Bn[&kf(0)ln/r(n+ l), n = 0,1,2,  ..., (26c) 

where 
vected singularities (i.e. ro = 0) can be written as follows. 

denotes the gamma function, the expressions for the centre-line con- 

Source 9 = C,. 
cos 0 

Dipoles 9z = -ik 1 -Mc cos 0 c0, 

q, = clcose, 

a2 = ClsinO. 

Quadruples 
k2COS2O 

2?xz= - 
(1-Mccoso)2 O’ 

cos 0 

cos 0 

3,, = -ik 
1 -M, cos 0 

2, = -ik gm 1 -Mc cos 0 

Note that 0 denotes the angle with respect to the jet axis, y and z are Cartesian 
co-ordinates in the transverse plane (y = r cos 0, z = r sin 8) and 0 is the polar 
angle in our original cylindrical co-ordinate system. 

In deriving ( 2 7 )  we used the fact that each time we differentiated? Y with 
respect to x; we bring down a factor of - i k c * .  

The above expressions for the dipoles and quadrupoles are valid within the 
zone of silence of round jets. Outside this zone, we set rc = 0 and replace f 2(0) 

Using a familiar notation, we now write 2?ij for the ij quadrupole (for example 
by -g2(0; c*). 

212 = 2?zg) and define 

where 
aij = (~2ij~2)(l-McCOsO), (29 a) 

Thus ay is the circumferential average of the amplitude of the ij quadrupole. 
The presence of the extra factor 1 -Hc cos 0 in (29a)  is thoroughly discussed by 

t Here xi denotes the x‘ co-ordinate of the source. Since a/&: = - alax’, we can set xi = 0 
and differentiate with respect t o  z’ rather than xi. 
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Ffowcs Williams (1963). According to  Ribner (1969), the mean-square pressure 
of the self-noise component p& is given by 

pSN = constant [all + + 2a,, + 2a,,]. (30) 

We remark that (30) is a somewhat (but very slightly) simplified version of the 
Ribner result. The constant of proportionality appearing in (30) is a known 
function of the turbulent length scale and velocity fluctuations. More realistic- 
ally, however, this constant should be regarded as an empirical quantity whose 
value is determined by matching the theoretical and experimental predictions at 
one angle, say 0 = 90”. Thus (30) predicts the shape of the far-field pressure 
distribution but it does not give its absolute level. 

Before we discuss the results of this theory it is perhaps worthwhile to review 
and summarize the most significant physical and mathematical assumptions. 
First, we have assumed that the pressure fluctuations in the jet obey Lilley’s 
equation, whose right-hand side contains two forcing terms, one of which is 
generally called self-noise and the other shear noise. A detailed set of assumptions 
implicit in the derivation of Lilley’s equation is given by Lilley (1972) and Mani 
(1 976a). 

In  the Lilley formulation the self- and shear-noise forcing terms are qualita- 
tively similar; they both are quadratic in the velocity fluctuations and both are 
essentially double divergences. The operator D, acting on the self-noise is equiva- 
lent to multiplication by w (the frequency of the eddy in its movihg reference 
frame). The mean flow gradient dU/dr multiplying the shear-noise term is 
also proportional to w, as may be seen from the experimental work of Davies, 
Fisher & Barratt (1963). On the other hand, the shear-noise quadrupole does 
exhibit a somewhat preferred axial orientation whereas the self-noise is isotropic. 
If this latter aspect of shear noise is ignored, the right-hand side of Lilley’s equa- 
tion can be approximated by a more or less isotropic quadrupole. This approxima- 
tion is adopted in the present theory to facilitate theoryldata comparison. Clearly 
this approximation is not necessary but it seems to be sufficiently accurate for 
the prediction of the noise of cold and hot jets (Mani 1976a, b) .  

The various quadrupole solutions .24j (or more precisely aij) are added with 
appropriate weighting factors such that the resultant sum represents an eddy 
of convected isotropic turbulence. These weighting factors come from Ribner’s 
theory of self-noise (1969). Now we have stated that for the Lilleyformulation 
the shear- and self-noise terms are extremely similar, so that we need not ‘dis- 
tinguish’ between them and can regard them as an effective self-noise source. 
One may ask, then, why not regard them as an effective shear-noise source and 
use the weighting factors of Ribner’s shear-noise theory? The answer to this 
question is very simple: whereas the seZf-m’se terms of the Lilley and Lighthill 
formulations are extremely similar, the shear-noise terms are vastly digerent. 
Thus we have virtually no justification for using the Ribner shear-noise weighting 
factors in the present theory. For details of the assumptions made by Ribner 
we refer the interested reader to the cited work. 

As in the Lighthill theory, we further assume that the quadrupoles are acoustic- 
ally compact and are convecting with a constant subsonic convection Mach 
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number M,. As is customary, Mc is taken to be 65 yo of the jet exit Mach number. 
The quadrupoles are assumed to lie on the jet axis. 

Finally, the present theory is valid for the high frequency component of the 
noise of subsonic cold round jets. 

Clearly not all of these assumptions can be justified rigorously ! However, it 
seems, at least to us, that we have judiciously and simultaneously combined 
the most important ingredients of jet noise - quadrupole source generation,? 
eddy convection and acoustic/mean-flow interaction - into a rational structure 
that explains many of the observed characteristics of jet noise at intermediate 
to high frequencies. 

7. Discussion 
The most significant finding of this paper is that within the zone of silence 

(i.e. 0 < 0 < 0, = cos-l[(l +MJ)-l]) the sound pressure level SPLBN due to 
self-noise is given by 

SPLSN = 10 log lop,& 

= - 8.6858 [ ka /ru’afd(~/a)] 0 

(31 a) 
cos4 8 + 2f2 cos2 0 + 3 4  [ (1 -MJcos 1 -2M,cos 0)5 + 10 log,, 

where 

and $= (1 -Mccos O)f(O). The first term in (31a) accounts for high frequency 
‘refraction’; the amount of refraction is clearly independent of the order of the 
singularity [see (26 a)]. Thus the pressure ff uctuations from simple sources, dipoles 
and quadrupoles, etc., are all refracted by the same amount, which is proportional 
to the frequency. For a given jet velocity profile M(r)  this integral can be readily 
evaluated for each location in the far field. 

The second term in (31a) exhibits a convective amplification factor 

(1 -Me cos a)-‘ (1 -MJ COB a)-’. 
Furthermore, this convection amplification factor is also present outside the zone 
of silence. When M = M j  = 0 (but N, =#= 0) we recover the classical Ribner- 
Ffowcs Williams result; however, for non-zero Mj, it appears that the jet flow 
produces additional convective amplification. In  fact, this convection factor is 
very similar to Mani’s (1976a) low frequency result that accounts for the low 
‘frequency lift’ at shallow angles (see also the experimental data of Lush 1971). 
In  the calculations this additional amplification never really shows up at high 
frequencies because i t  is cancelled by the refractive effect for the most part. The 
results contained in (31 a) clearly reveal the importance of acoustic/mean-flow 

t Monopole- and dipole-source generation can be ignored in the present theory (k + a) 
since they me of order kO and k1 respectively whereas the quadrupole pressure is of order ka. 
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FIQTJRE 2. Comparison of theoretical and experimental results. Source Strouhal number 
= 1.0. (a) Jet velocity = 300m/s. (b) Jet velocity = lOOOft/s. V, experimental data of Lush 
(1971); 0, experimental data of Ahuja & Bushel1 (1973); ----, theory of Mani (1976~);  

, present theory. 

interactions. Nevertheless, these results also show that at high frequencies 
it is possible to separate convection and refraction completely, although the pre- 
sent convection factor differs somewhat from the classical result. Thus, using 
Lighthill’s theory to account for convection and a separate theory to account for 
refraction would yield a result different from ours. Furthermore, the refraction 
integral is independent of the order of the singularity. 

One additional point to note is that certain quadrupoles (such as 2?uu) contain 
source-like terms whose coefficients are essentially the mean flow gradients. 
Similar terms play a fairly important role for hot jets at low frequencies (where 
they depend on the temperature gradient) but are generally ignored for cold 
jets (Mani 1976b). Thus in the theory/data comparison we drop the terms in 
(27h, i) that are proportional to M”(0) since they are of lower order in k. 

We now come to the theory/data comparison. What we need to do is to relate 
M, and M j  to those jet properties that are usually measured. As is customary, we 
set M, = 0.65 M(Y, where M$) is the jet exit Mach number. The jet velocity profile 
is represented by 

wherexis a constant. To account very crudelyfor jet spread, we setXJ = 0-65M($) 
then the conservation of momentum in the axial direction determines x. In  other 
words, momentum conservation yields one relationship between MJ and x. 
In  this respect, the present theory is semi-empirical with one adjustable constant 
(say NJ) outstanding. Since the mean flow profiles of our theory have no axial 
variation, some kind of average value for MJ must be chosen. Our choice seems 
reasonable but is by no means unique. 

The theoretical predictions are shown in figures 2-4, where the levels of the 
theoretical curves have been adjusted to obtain good agreement with the ex- 
perimental data at  @ M 90’. The agreement between the present theory and 
various experimental data is good when the source Strouhal number { = ku/7rMJ) 
is about unity but, surprisingly enough, not very good at ti source Strouhal 

M ( r )  = MJexp [ -x(r /u)2] ,  (32) 
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FIUURE 3. Comparison of theoretical and experimental results. Jet velocity = 986.8 ft/s. 
(a) Source Strouhal number = 0.136. (b) Source Strouhal number = 0.346. 0, 0, experi- 
mental data of Olsen (private communication); ---- , theory of Mani (1976a); -, 
present theory. 
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FIUURE 4. Comparison of theoretical and experimental results. Jet velocity = 986.8 ft/s. 
(a) Source Strouhal number = 1.0. (b )  Source Strouhal number = 2.0.0, experimental data 
of Olsen (private communication); ---- , theory of Mani (19764;  -, present theory. 

number of two a t  shallow angles. The corresponding slug-flow predictions of 
Mani are also shown in these figures. Thus we find that the refractive effects are 
still overestimated even though there is a 10-15dB improvement over Mani's 
results. 

These calculations clearly show the inadequacy of our theory at very high 
frequencies. At these frequencies, jet spread and turbulent scattering are very 
important and must be incorporated in every theory to obtain good quantitative 
agreement. Nevertheless, it  now appears that we are in a position to predict? 
the directivity of jet noise up to source Strouhal numbers somewhat greater than 
unity. Interestingly enough, both Mani's and the present results shown in figures 
2 and 4 include only the self-noise component of jet noise. This probably implies 
that the self- and shear-noise components (based on the Lilley formulation) 
are so similar that one really does not need to distinguish between them. 

Figure 3 shows that the present theory is not too bad even at  fairly low Strouhal 
numbers. This is, of course, fortuitous but indicates the range of applicability of 

t Of course, a t  low frequencies, Mani's theory gives very good results. 
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the theory. We remark that by using Lilley’s equation we have introduced another 
singularity when M j  cos 0 = 1. We do not know at this point how to ‘remove ’ 
this singularity, although our theory is valid for MJ > 1 as long as & < 1 and 

Finally we wish to  point out that the present theory combines the classical 
ideas of Lighthill, Ribner and Ffowcs Williams with those of Mani to provide a 
simple result for the estimation of acoustic/mean-flow interaction in jet noise. 
Extension of this work to hot jets and to off-axis singularities is currently in 
progress. 

MJ-M, < 1. 
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